Rabu, 03 November 2010

KONVERSI SATUAN

Konversi = Mengubah

Besaran apapun yang kita ukur, seperti panjang, massa atau kecepatan, terdiri dari angka dan satuan. Sering kita diberikan besaran dalam satuan tertentu dan kita kita ingin menyatakannya dalam satuan lain. Misalnya kita mengetahui jarak dua kota dalam satuan kilometer dan kita ingin mengetahui berapa jaraknya dalam satuan meter. Demikian pula dengan massa benda. Misalnya kita mengukur berat badan kita dalam satuan kg dan kita ingin mengetahui berat badan kita dalam satuan ons atau pon. Untuk itu kita harus mengkonversi satuan tersebut. Konversi berarti mengubah. Untuk mengkonversi satuan, terlebih dahulu harus diketahui beberapa hal yang penting, antara lain awalan-awalan metrik yang digunakan dalam satuan dan faktor konversi.

Contoh :

Pembahasan Soal

TRIGONOMETRI

            3.        Gambarkan grafik fungsi trigonometri berikut:
                  a.   y = 2sin(x), dengan x dalam radian  
                      b.    y = cos(2x), dengan x dalam derajat
                
                     Jawab :





 
          4.     Jelaskan identitas trigonometri (trigonometry identities) berikut dan berikan contohnya !

        a. Identitas perbandingan (ration indenties)
                    b. Fungsi kebalikan (inverse functions)
                     c. Identitas Phytagoras (Phytagorean identities)

Jawab:

Identitas Trigonometri yaitu dasar yang menghubungkan satu perbandingan trigonometri dengan perbandingan trigonometri yang lain.
a.       Identitas perbandingan
b.       Fungsi kebalikan (inverse functions)
c.       Identitas Phytagoras (Phytagorean identities)


Selasa, 02 November 2010

Titik dan Garis

Dalam matematika, Sistem koordinat Kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x dan koordinat y dari titik tersebut.

Untuk mendefinisikan koordinat diperlukan dua garis berarah yang tegak lurus satu sama lain (sumbu x dan sumbu y), dan panjang unit, yang dibuat tanda-tanda pada kedua sumbu tersebut. 

Sistem koordinat Kartesius dapat pula digunakan pada dimensi-dimensi yang lebih tinggi, seperti 3 dimensi, dengan menggunakan tiga sumbu (sumbu x, y, dan z).

Istilah Kartesius digunakan untuk mengenang ahli matematika sekaligus filsuf dari Perancis Descartes, yang perannya besar dalam menggabungkan aljabar dan geometri (Cartesius adalah latinisasi untuk Descartes). Hasil kerjanya sangat berpengaruh dalam perkembangan geometri analitik, kalkulus, dan kartografi.

Ide dasar sistem ini dikembangkan pada tahun 1637 dalam dua tulisan karya Descartes. Pada bagian kedua dari tulisannya Discourse on Method, ia memperkenalkan ide baru untuk menggambarkan posisi titik atau obyek pada sebuah permukaan, dengan menggunakan dua sumbu yang bertegak lurus antar satu dengan yang lain. Dalam tulisannya yang lain, La Géométrie, ia memperdalam konsep-konsep yang telah dikembangkannya.

Trigonometri

Sejarah Awal Trigonometri

Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya VedangaJyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.
Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.
Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.

Trigonometri Pada Masa Sekarang

Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik,teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi,oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya.

Hubungan Fungsi Trigonometri

\sin^2 A + \cos^2 A = 1 \,
1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,
1 + \cot^2 A = \csc^2 A \,
\tan A = \frac{\sin A}{\cos A}\,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,
\sin (A - B) = \sin A \cos B - \cos A \sin B \,
\cos (A + B) = \cos A \cos B - \sin A \sin B \,
\cos (A - B) = \cos A \cos B + \sin A \sin B \,

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,
\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,
\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,
\cos 3A = 4 \cos^3 A - 3 \cos A \,


Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,
\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,
\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,

Renatus Cartesius

René Descartes lahir di La Haye, Perancis, 31 Maret 1596 – wafat di Stockholm, Swedia, 11 Februari 1650 pada umur 53 tahun), juga dikenal sebagai Renatus Cartesius dalam literatur berbahasa Latin, merupakan seorang filsuf dan matematikawan Perancis. Karyanya yang terpenting ialah Discours de la méthode(1637) dan Meditationes de prima Philosophia (1641).
Descartes, kadang dipanggil "Penemu Filsafat Modern" dan "Bapak Matematika Modern", adalah salah satu pemikir paling penting dan berpengaruh dalam sejarah barat modern. Dia menginspirasi generasi filsuf kontemporer dan setelahnya, membawa mereka untuk membentuk apa yang sekarang kita kenal sebagai rasionalisme kontinental, sebuah posisi filosofikal pada Eropa abad ke-17 dan 18.
Pemikirannya membuat sebuah revolusi falsafi di Eropa karena pendapatnya yang revolusioner bahwa semuanya tidak ada yang pasti, kecuali kenyataan bahwa seseorang bisa berpikir.
Dalam bahasa Latin kalimat ini adalah: cogito ergo sum sedangkan dalam bahasa Perancis adalah: Je pense donc je suis. Keduanya artinya adalah:
"Aku berpikir maka aku ada". (Inggris: I think, therefore I am)
Meski paling dikenal karena karya-karya filosofinya, dia juga telah terkenal sebagai pencipta sistem koordinat Kartesius, yang mempengaruhi perkembangan kalkulus modern.

(Sumber: http://id.wikipedia.org/wiki/Rene_Descartes)
(Sumber: http://id.wikipedia.org/wiki/Rene_Descartes)

Sejarah Phytagoras

Sejarah

Sejarah dari Teorema Pythagoras dapat dibagi sebagai berikut:

1. Pengetahuan dari Triple Pythagoras,
2. Hubungan antara sisi-sisi dari segitiga siku-siku dan sudut-sudut yang berdekatan, 3. bukti dari teorema. 

Sekitar 4000 tahun yang lalu, orang Babilonia dan orang Cina telah menyadari fakta bahwa sebuah segitiga dengan panjang sisi 3, 4, dan 5 harus merupakan segitiga siku-siku. Mereka menggunakan konsep ini untuk membangun sudut siku-siku dan merancang segitiga siku-siku dengan membagi panjang tali ke dalam 12 bagian yang sama, seperti sisi pertama pada segitiga adalah 3, sisi kedua adalah 4, dan sisi ketiga adalah 5 satuan panjang.

Sekitar 2500 tahun SM, Monumen Megalithic di Mesir dan Eropa Utara terdapat susunan segitiga siku-siku dengan panjang sisi yang bulat. 
Bartel Leendert van der Waerden meng-hipotesis-kan bahwa Tripel Pythagoras diidentifikasi secara aljabar. Selama pemerintahan Hammurabi the Great (1790 - 1750 SM), tablet Plimpton Mesopotamian 32 terdiri dari banyak tulisan yang terkait dengan Tripel Pythagoras. Di India (Abad ke-8 sampai ke-2 sebelum masehi), terdapat Baudhayana Sulba Sutrayang terdiri dari daftar Tripel Pythagoras yaitu pernyataan dari dalil dan bukti geometris dari teorema untuk segitiga siku-siku sama kaki.

Pythagoras (569-475 SM) menggunakan metode aljabar untuk membangun Tripel Pythagoras. Menurut 
Sir Thomas L. Heath, tidak ada penentuan sebab dari teorema ini selama hampir lima abad setelah Pythagoras menuliskan teorema ini. Namun, penulis seperti Plutarch dan Cicero mengatributkan teorema ke Pythagoras sampai atribusi tersebut diterima dan dikenal secara luas. Pada 400 SM, Plato mendirikan sebuah metode untuk mencari Tripel Pythagoras yang baik dipadukan dengan aljabar and geometri. Sekitar 300 SM, elemen Euclid (bukti aksiomatis yang tertua) menyajikan teorema tersebut. Teks Cina Chou Pei Suan Ching yang ditulis antara 500 SM sampai 200 sesudah masehi memiliki bukti visual dari Teorema Pythagoras atau disebut dengan "Gougu Theorem" (sebagaimana diketahui di Cina) untuk segitiga berukuran 3, 4, dan 5. Selama Dinasti Han (202 SM - 220 M), Tripel Pythagoras muncul di Sembilan Bab pada Seni Mathematika seiring dengan sebutan segitiga siku-siku. Rekaman pertama menggunakan teorema berada di Cina sebagai 'theorem Gougu', dan di India dinamakan "Bhaskara theorem".

Namun, hal ini belum dikonfirmasi apakah Pythagoras adalah orang pertama yang menemukan hubungan antara sisi dari segitiga siku-siku, karena tidak ada teks yang ditulis olehnya yang ditemukan. Walaupun demikian, nama Pythagoras telah dipercaya untuk menjadi nama yang sesuai untuk teorema ini.

Tugas Pertama "Siapakah Phytagoras ???"

Tugas pertama kali ini adalah tentang matematika. Beberapa materi harus segera diselesaikan, begitu juga dengan soal-soal yang telah diberikan. Dalam tugas pertama ini membahas mengenai siapakah phytagoras?

Nah langsung saja :

Phytagoras lahir pada tahun 570 SM, di pulau Samos, di daerah Ionia. Pythagoras (582 SM – 496 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya. Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.

Dalam tradisi Yunani, diceritakan bahwa ia banyak melakukan perjalanan, diantaranya ke Mesir. Perjalanan Phytagoras ke Mesir merupakan salah satu bentuk usahanya untuk berguru, menimba ilmu, pada imam-imam di Mesir. Konon, karena kecerdasannya yang luar biasa, para imam yang dikunjunginya merasa tidak sanggup untuk menerima Phytagoras sebagai murid. Namun, pada akhirnya ia diterima sebagai murid oleh para imam di Thebe. Disini ia belajar berbagai macam misteri. Selain itu, Phytagoras juga berguru pada imam-imam Caldei untuk belajar Astronomi, pada para imam Phoenesia untuk belajar Logistik dan Geometri, pada para Magi untuk belajar ritus-ritus mistik, dan dalam perjumpaannya dengan Zarathustra, ia belajar teori perlawanan.

Selepas berkelana untuk mencari ilmu, Phytagoras kembali ke Samos dan meneruskan pencarian filsafatnya serta menjadi guru untuk anak Polycartes, penguasa tiran di Samos. Kira-kira pada tahun 530, karena tidak setuju dengan pemerintahan tyrannos Polycartes, ia berpindah ke kota Kroton di Italia Selatan. Di kota ini, Phytagoras mendirikan sebuah tarekat beragama yang kemudian dikenal dengan sebutan “Kaum Phytagorean.”


reff: http://kolom-biografi.blogspot.com/2009/01/biografi-phytagoras.html